iFALCON: A neural architecture for hierarchical planning
نویسندگان
چکیده
منابع مشابه
iFALCON: A neural architecture for hierarchical planning
Hierarchical planning is an approach of planning by composing and executing hierarchically arranged predefined plans on the fly to solve some problems. This approach commonly relies on a domain expert providing all semantic and structural knowledge. One challenge is how the system deals with incomplete ill-defined knowledge while the solution can be achieved on the fly. Most symbolic-based hier...
متن کاملA self-organizing neural network architecture for intentional planning agents
This paper presents a model of neural network embodiment of intentions and planning mechanisms for autonomous agents. The model bridges the dichotomy of symbolic and non-symbolic representation in developing agents. Some novel techniques are introduced that enables the neural network to process and manipulate sequential and hierarchical structures of information. It is suggested that by incorpo...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملNeural Mechanisms of Hierarchical Planning in a Virtual Subway Network
Planning allows actions to be structured in pursuit of a future goal. However, in natural environments, planning over multiple possible future states incurs prohibitive computational costs. To represent plans efficiently, states can be clustered hierarchically into "contexts". For example, representing a journey through a subway network as a succession of individual states (stations) is more co...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2012
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2012.01.008